
Unfolding the 8-Bit Era

Fabio Zünd
∗

fzuend@inf.ethz.ch
Pascal Bérard†∗

pberard@inf.ethz.ch
Alexandre Chapiro†∗

achapiro@inf.ethz.ch

Stefan Schmid†∗

schmist@inf.ethz.ch
Mattia Ryffel

†

mryffel@inf.ethz.ch
Markus Gross†∗

grossm@inf.ethz.ch

Amit H. Bermano†∗

amberman@inf.ethz.ch
Robert W. Sumner†∗

sumnerb@inf.ethz.ch

ABSTRACT
We propose a hardware and software system that transforms 8-bit
side-scrolling console video games into immersive multiplayer ex-
periences. We enhance a classic video game console with custom
hardware that time-multiplexes eight gamepad inputs to automati-
cally hand off control from one gamepad to the next. Because con-
trol transfers quickly, people at a large event can frequently step in
and out of a game and naturally call to their peers to join any time
a gamepad is vacant. Video from the game console is captured and
processed by a vision algorithm that stitches it into a continuous,
expanding panoramic texture, which is displayed in real time on
a 360 degree projection system at a large event space. With this
system, side-scrolling games unfold across the walls of the room to
encircle a large party, giving the feeling that the entire party is tak-
ing place inside of the game’s world. When such a display system
is not available, we also provide a virtual reality recreation of the
experience. We show results of our system for a number of classic
console games tested at a large live event. Results indicate that our
work provides a successful recipe to create immersive, multiplayer,
interactive experiences that leverage the nostalgic appeal of 8-bit
games.

CCS Concepts
•Computing methodologies→ Image and video acquisition; Im-
age processing; Virtual reality;

Keywords
games, panoramic stitching, virtual reality

∗ETH Zurich, Universitätsstrasse 8, 8092 Zürich, Switzerland
†Disney Research Zurich, Stampfenbachstrasse 48, 8006 Zürich,
Switzerland

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CVMP 2015, November 24-25, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3560-7/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2824840.2824848

Figure 1: Side-scrolling games unfold across the walls of the
room to encircle the players, immersing them into the game’s
world. The games are played using the console, enhanced to al-
low up to eight players to participate, in the center of the room.

1. INTRODUCTION
Video games are a cultural phenomenon. Through their unique

combination of visual, narrative, auditory, and interactive elements,
video games provide an engaging medium of expression within our
society. The 8-bit era, dominated by the Nintendo Entertainment
System (NES) [3], included a focus on side-scrolling graphics with
pivotal leaps in game design, mechanics, and story that deeply in-
fluenced nearly every game that followed [23]. As a case in point,
the original Super Mario Bros. series largely defined the platform-
ing genre and pioneered a new level of game feel characterized by
loose and fluid movement through an expansive world [20]. These
games touched the lives of a huge number of gamers and their
gameplay still holds up today.

Although 8-bit games have had a dramatic collective cultural im-
pact, the actual experience of playing them is largely an individual
one. With few exceptions, hardware and design limitations restrict

gameplay to one or two players in front of a low-resolution display.
This setup confines gameplay to a small region, restricts social in-
teraction, and limits the number of players that can enjoy a clas-
sic gaming experience. Even with modern game hardware, party
games rarely extend beyond a small number of people playing in
front of a display.

In this paper, we propose a custom hardware and software setup
to transform classic side-scrolling games into collective experiences
in which the games become immersive group activities. We take
advantage of the nostalgic appeal of 8-bit games and their com-
pelling yet accessible gameplay by using a classic NES console as
our game hardware. Our system enhances the NES in two dramatic
ways. First, we add a custom piece of hardware that takes as in-
put eight NES gamepads and time multiplexes the output so that
the real-time control is handed automatically from one gamepad to
the next either every five seconds or based on progress through a
game. Second, we capture the NES video output and direct it to a
computer vision system that stitches video frames into a continu-
ous, expanding texture similar to a panoramic photo. This texture
is displayed live on a 360 degree projection system that allows the
game to unfold on the walls of a large event space. When such
a display system is not available, we also provide a Virtual Real-
ity (VR) recreation of the experience. A conceptual illustration of
our system is included in Figure 1, along with a photo of the system
in action.

Taken together, our system transforms classic gaming into an im-
mersive, cooperative multiplayer experience designed to enhance
large parties and other social events. The eight-way multiplexing
hardware encourages multiple people to play and adds a new level
of social interaction on top of existing gameplay. Because control
transfers quickly, people at a large event can frequently step in and
out of the game. Whenever a gamepad is unused, others playing
naturally call to their peers to join in before the control reaches the
vacant gamepad. The panoramic stitching and 360 degree projec-
tion allow a side-scrolling game to encircle a large party, giving
the feeling that the entire party is taking place inside of the game’s
world. By using a real NES console, as opposed to an emulator,
we maintain the tangible connection to the physical Nintendo hard-
ware and the nostalgic appeal of loading real game cartridges into
the system. Successful operation sometimes even requires blowing
on the cartridge’s connectors to clear away dust, as many gamers
fondly (or not so fondly) remember from their childhood.

Our core contributions include the conceptual design of our sys-
tem that unfolds 8-bit side-scrolling games around a large party as
well as the technical design of the time-multiplexing hardware and
computer vision algorithms for panoramic stitching of video game
input. We show results of our system on a number of NES games at
a live event with over four-hundred participants as well as in a VR
scene that recreates the feeling of the large event space.

2. RELATED WORK
Retro gaming is a general term referring to a modern commu-

nity where old games, mostly those produced in the 1980s and early
1990s, are played or collected. Many people find the video games
they played as children to have a nostalgic allure [19], resulting in
a significant cultural impact of old school gaming. This connection
has been acknowledged and leveraged by researchers for various
purposes. Areas such as psychotherapy [8] and speech therapy [21]
benefit from the engaging aspects of retro games to motivate pa-
tients. Generations impacted by classic games are subjected to tar-
geted teaching methods that take their interests into account [9].
Others appreciate the elegant designs of early gaming systems and
strive to preserve the characteristic visual look of pixel art when

adapting content to fit modern architectures [13, 14]. In our work,
we try to preserve the feeling of retro gaming as much as possi-
ble, while simultaneously adapting the content to be displayed in a
modern immersive setting.

Immersive display has been an active topic for both research
and industry in the past years. While pioneering efforts such as
the CAVE automatic virtual environment [6] are complex to set up
and may accommodate no more than a single user, modern systems
often try to enhance the viewers’ experience by augmenting stan-
dard display technologies. Commercially available systems such as
IMAX [10] provide viewers with a wider field of view than stan-
dard cinemas. Projection [11] and additional illumination [22] can
be employed in tandem with standard displays in order to present
content to the peripheral vision of observers. Finally, modern VR
prototypes shift the viewing experience to a wearable VR headset.
In this work, we test our system on two different immersive display
setups: a custom commercial 360 degree projection system and the
popular Oculus Rift DK2 [18]).

Image tracking is used in our system to correctly place the cur-
rent video frame in the global context of an expanding panoramic
texture. Due to our target video setup, we consider only side-
scrolling games. As a result, the tracked frame can only move
horizontally. The speed of this movement, however, is determined
by the player. It is not uniform and can include standing still or
even backtracking. Camera movement in side-scrolling games was
analyzed in depth by Keren [12].

To track the movement, corresponding points in the input frame
and the output buffer must be found. Many algorithms to find
scene correspondences exist, ranging from dense correspondence
algorithms like optical flow [4] and stereo reconstruction [7] to
sparse algorithms based on feature detection like SIFT [16]. Robust
matching based on RANSAC [24] is used in applications such as
panorama stitching. All of these methods deal with complex situa-
tions with many degrees of freedom. While these methods solve a
wide array of problems, the tracking required for our application is
limited to 1D shifts and requires real-time performance. For these
reasons we choose a straightforward confidence weighted model,
described in Section 4.2.

3. OVERVIEW
We present a system that bridges the gap between classic 8-bit

side-scrolling console video games and state-of-the-art media dis-
play systems to deliver compelling, multiplayer, immersive game
experiences. Figure 2 depicts an overview of our system’s archi-
tecture. While our system is not limited to a specific console, we
optimized it for the NES. The video signal generated by the console
is captured by a tracking PC, with careful attention to quality and
latency. The tracking PC identifies background motion in order to
stitch the video frames together into an expanding panoramic tex-
ture image. We deployed and tested our system at the conference
banquet during the Eurographics 2015 conference, which was held
in a large event space that contains an integrated state-of-the-art
360 degree projection system. Our system used this display sys-
tem to seamlessly wrap the game texture around the event room as
players played. We also recreated the feeling of this live event in
VR using the Oculus Rift DK2.

Our system is tailored for this party scenario, where several play-
ers engage in the game together. This cooperation is enabled through
multiplexing several NES gamepads, activating only one of them at
each point in time. The gamepads are switched between players
based either on a fixed time interval or on the current position of
the game in the 360 degree projection. The dynamic and automatic
transition between active gamepad control encourages interaction

NES Up-Scaler Capture Card Tracking PC

Media Server

Gamepads ...

Projection Room Server Room Game Area

NES Controller Cable

NES Controller Cable

4x HDMI

...

Projectors

Speakers

Multiplexer

RGB HDMI USB 3Audio

8x HDMI

USB 2

VR Display

Figure 2: System architecture overview. The NES output video signal is first captured and sent for analysis. The tracking PC
processes the video stream, tracks the background, and creates a wide, panoramic image. This image is either incorporated into a
VR environment or sent to a 360 degree projection system. The projection system receives the video streams, processes, and outputs
them to the projectors. For the projection configuration, the division between the projection hall and server room is indicated by
blue and green backgrounds, respectively.

between the players for successful gameplay and increases the so-
cial aspect of the system.

In our VR demo, a simple scene is created based on the original
360 degree projection event space. The scene contains four walls
which are textured with the tracked image. The player is located in
the center of the room and can follow the progress of the game by
turning his or her head.

4. SYSTEM
In this section, we discuss the different software and hardware

aspects of our system in detail.

4.1 Video capture
The first step of our system is to capture the analog output of the

gaming console. Although seemingly simple, this task turned out
to be non-trivial. First, the NES outputs a 240p resolution signal
(320×240 pixels). Most modern capture hardware does not han-
dle this outdated standard well or does not handle it at all. An up-
scaling device allows the conversion of this signal to a more modern
and standard one. However, up-scaling operations typically include
unwanted artifacts, such as vertical screen shaking. These subtle in-
accuracies cause a jittering effect that slightly decreases the visual
quality and significantly affects the tracking performance. Software
stabilization techniques increase the latency of the system and are
thus undesired.

Therefore, we choose to incorporate an up-scaler device that
is optimized for low-resolution console signals. We find that the
XRGB-mini Framemeister up-scaler [17] produces high-quality, low-
latency signals for the aforementioned low-resolution obsolete video
standard. By converting the video stream to 576p at 50 Hz, the de-
vice is able to improve signal fidelity and quality without increasing
latency. The up-scaled signal is then captured using a Blackmagic
Design Intensity Shuttle capturing device [2].

4.2 Tracking
We dynamically construct an expanding panoramic image of the

game levels by copying the input frames into a wide output buffer
with a fixed vertical resolution. The correct placement of the in-
put frame relative to the output buffer is found by tracking game’s
apparent camera motion. Due to our target 360 degree projection

system that wraps horizontally around the walls, we consider only
horizontal side-scroller games. Thus, our tracking algorithm must
consider only one degree of freedom of camera movement. We pro-
pose several strategies to perform this calculation and compose the
input frames with the existing output buffer pixels. Figure 3 depicts
an overview of our approach.

4.2.1 Matching Error
Given the previous frame position, we search locally in its neigh-

borhood to find the horizontal pixel offset of the current frame rela-
tive to the previous one. The search is done bidirectionally but can
be restricted to a single direction for specific games.

We compute a matching error for every one-pixel offset in the
neighborhood. For normal camera speeds, a neighborhood rang-
ing from -20 to +20 pixels is sufficient. For each offset value, a
matching error is computed from all input pixels overlapping the
non-masked pixels of the output buffer. An output pixel is masked
if it has never been painted or if it is being overwritten. The er-
ror consists of the aggregate of the L1-norms of the color differ-
ence, normalized by the number of pixels in the overlap region. We
use the L1-norm instead of the more common L2-norm since the
two signals that we compare rarely match perfectly due to transient
foreground elements. The L1-norm places a lower penalty on out-
liers and is favorable in this situation. The matching error is defined
as

e =
1
N

N

∑
i=1
|Roi−Rii|+ |Goi−Gii|+ |Boi−Bii|, (1)

where Rii, Gii, Bii are the red, green, and blue color values of the
i-th input image pixel in the overlap region and Roi, Goi, Boi refer-
ence the i-th pixel of the output buffer.

The overlap region is only sampled along a reduced number of
lines for performance reasons. We use 40 lines in all of our exper-
iments. We also manually exclude areas from the tracking if they
contain static foreground elements like scoreboards and other UI
features. These areas are stored as presets in our application so that
games can be switched quickly. Once the matching errors are com-
puted, we find the offset with the minimum error e1 and update the
current camera position.

Input Frame

Output Frame

Matching Error

M
as

ke
d

Re
gi

on

Fi
lle

d
Ba

ck
gr

ou
nd

Best e1Previous

Search Neighborhood

Re�nement
Neighborhood

Second best e2

Excluded

Figure 3: Camera tracking. Top left: the current input frame with a manually labeled region excluded from the tracking. Top right:
Illustration of the matching error for camera movement estimation of the current input frame. Bottom: the output buffer with the
current input frame position (red). A strip of pixels corresponding to the camera movement is filled in (green).

4.2.2 Tracking Confidence
During gameplay, the scene may change completely, such as

when switching between levels or showing a game over screen.
Since the camera cannot be tracked in this situation, our system
keeps track of the current camera position and overwrites the cur-
rent frame within the buffer. To detect such a screen refresh, a
confidence value for the tracked position is computed. A non-
minimum suppression is applied to the matching errors by label-
ing all of the offset positions that have two adjacent neighbors with
higher matching errors. The minimum error e1 is used together
with the second lowest labeled matching error e2 to compute the
confidence:

confidence = 1− e1

e2
. (2)

Finally, a threshold is applied to determine if the tracking suc-
ceeded. In our examples, we use a threshold value of 0.1.

4.2.3 Refinement
Since the camera can move by subpixel values due to the scaling

and jitter in the input signal, we refine the current position at sub-
pixel levels by computing the matching scores for N positions per
pixel in a 2-pixel neighborhood. The position with the minimum
error is the final frame position. We used N = 10.

4.2.4 Frame Composition
There are different strategies to composite the input frame into

the output buffer. The pixels at the current position should always
be taken from the input frame since this is where the actual game
action takes place. When the camera moves, on the other hand,
a strip of pixels can be filled in with the information from one or
more previous frames. We propose two different strategies.

• Direct: In the simplest case we use only the previous frame
to fill in the missing background pixels. Since the previ-
ous frame contains both foreground and background objects,
both will be copied. Foreground objects will sometimes re-
main frozen in the buffer texture.

• Median: By taking into account multiple frames, we can es-
timate the background pixel colors more robustly and treat
foreground objects as outliers. This estimation is done by
storing the last F frames from which we compute the median
color for each pixel. We found a value of F = 20 to be a good
compromise. On one hand, more frames provide a better
background color estimation. But, on the other hand, static
foreground elements like score boards will produce smeared
artifacts when additional frames are used.

Both modes have their advantages and disadvantages. Figure 4
depicts a side-by-side comparison. Since the direct mode is not
able to suppress foreground elements, they will remain in the final
output. Depending on their movement during processing, they can
be squeezed, stretched, or torn apart. The median mode, on the
other hand, can suppress foreground elements, but it bears two dis-
advantages. First, if the tracking is inaccurate the generated image
is blurry. Second, foreground objects might suddenly appear or dis-
appear as soon as they exit the active frame, depending on whether
they are contained in the majority of the previous frames or not.
The most appropriate method depends on the game and on which
artifacts are preferred by the user. We found the sharper results of
the direct mode to be most appealing and used this mode during
deployment of our system.

Selected Input Frames

Direct

Median

Figure 4: Comparison of frame composition modes. The direct
mode does not suppress foreground elements and can result in
artifacts that include stretching, squeezing, and tearing of fore-
ground objects. The median mode suppresses foreground ob-
jects but can sometimes lead to blurring. Examples are high-
lighted by enlarged patches.

4.3 Display
We evaluated our system using two output configurations. The

first consists of a 360 degree projection system in a large event
space. The second places the user into an immersive VR environ-
ment.

4.3.1 360 Degree Projection
Our system was deployed during the conference banquet of Eu-

rographics 2015. The banquet took place in a high-ceilinged rect-
angular hall equipped with a 360 degree projection system that can
display seamless video on all four walls of the room, as seen on
Figure 10. The input consists of four 1080p video signals, which
are fed into two Coolux Pandora’s Box Quadserver Pro [5] me-
dia servers. The media servers drive eight projectors, two for each
wall, and take care of aligning and blending the inputs. The walls
depict different aspect ratios and the servers distort the input im-
ages in order to cover the entire area. Our system compensates for
this aspect ratio disparity with a GPU algorithm for real-time per-
formance. Our NES console was placed in the center of the room
and the game unfolded around the walls of the venue throughout
the evening as attendees played.

4.3.2 Virtual Reality
For the VR immersion setting, we employ the Oculus Rift DK2

Head-Mounted Display (HMD) [18]. Inspired by the 360 degree
projection scenario, the player is placed in the middle of a virtual
room whose four walls depict the game world. The player enjoys
a life-size virtual map that unfolds around him or her as the game
evolves. Figure 5 shows our system in action.

4.4 Gamepad Control
In order to enhance the social experience of the players, our pro-

totype utilizes eight gamepads allowing the fast exchange of active
players. Players stand around the console, facing each other and
the game above them. The console is placed on a table, and the
gamepads are positioned in a circular manner around it, as depicted
in Figure 6. Gamepads are activated automatically without pausing
the game, which requires coordination between the players in order
to achieve smooth gameplay.

Figure 5: VR setup. Employing the Oculus Rift DK2, the
tracked buffer spans across four walls in a scene inspired by
the 360 degree projection setup. In the main image, the views
shown to the player’s eyes are presented. The player, shown
in the lower right, enjoys a life-sized game realm as it unfolds
during gameplay.

4.4.1 User Interaction
The switching mechanism we developed has two modes. The

first mode progresses the control around the table after a fixed time
period. The second mode gives control to the player that faces the
current position of the game within the projected surrounding. In
both cases, we noticed that visual cues must be given to players in
order to achieve a smooth in-game transition. The visual cues are
fourfold, addressing different needs of the players. First, as seen
in Figure 6, a small light next to each gamepad indicates when the
corresponding gamepad is active. This cue helps a player pick up
the active gamepad. However, we observed that players may not
notice the activity indication light when focusing on the gameplay.
Therefore, second, each gamepad is assigned a number, and the ac-
tive gamepad’s number is always displayed next to the active play-
ing region through the projection system, as depicted in Figure 6.
Third, a transition between gamepads must be indicated. Without
this additional stimulus, a short period of inactivity is induced until
the new active player realizes it is his or her turn to play. Therefore,
we set the transitions to always be in the same direction around the
table, making them easier to follow. Both the displayed number
and the activity indication light blink for two seconds before each
transition. An alert player or an alert observer notices the blink
and is ready to start playing as soon as control is passed to him or
her. Forth, the active playing region is covered with the new active
gamepad number for a short period of time, two frames, upon tran-
sition. These indicators yielded successful and smooth gameplay
interactions during the event.

4.4.2 NES Gamepad Hardware
The NES gamepad is connected via a seven-wire cable to the con-

sole. The pinout is shown in Figure 7. Pin 1 to 3 are used to trigger
and collect data from the gamepad, pin 4 and 5 are not used (not
connected), pin 6 acts as ground and pin 7 is the voltage source.
Since the gamepad is based on a Complementary Metal-Oxide-
Semiconductor (CMOS), any voltage roughly around 5 V will work.
An original gamepad features eight buttons: the four directions,
start, select, A and B. Every button can assume two states, pressed
or non-pressed, which are digitally modeled as HIGH and LOW
states. These states reach the console via a poll-based mechanism.
When the console wants to know the states of the gamepad’s but-
tons, it sends a short pulse (HIGH) on the latch line (pin 2). This

Figure 6: Game setup for the 360 degree projection configura-
tion. Left: The console is set on a designated octagonal table in
the middle of the room. Eight gamepads are connected to it in a
circular manner. Top right: The active gamepad number is in-
dicated next to the playing region at all times. Bottom right: an
indicator light is illuminated when the corresponding gamepad
is active.

brief HIGH state of the latch line (otherwise LOW) is interpreted
by the gamepad electronics as a request to store the current state of
all buttons. This process is implemented with the help of a parallel-
to-serial 8-bit shift register [15]. Subsequently, the captured button
states can be polled, one-by-one, from the shift register by sending
a HIGH pulse on the clock wire (pin 1). The requested information
will be made available on the data line (pin 3).

CLOCK

LATCH

DATA

VCC

GND

NC

NC

1

2

3 4

5

6

7

Figure 7: NES gamepad cable pinout.

4.4.3 Gamepad Multiplexing
The NES console supports up to two gamepads simultaneously.

Since our design requires eight gamepads with control hand-over,
we built a custom piece of electronics to selectively multiplex the
eight gamepads. The system must be able to give control to any
of the gamepads during a running game experience. Figure 8 de-
picts the schematic of the Arduino-based [1] multiplexing device
and Figure 9 shows the actual hardware implementation. The bus
width is given as the number in square brackets. Voltage source and
ground (omitted in the scheme) for all gamepad connectors, includ-
ing the one connecting to the console, are connected in parallel.
Gamepad ground and Arduino ground are hooked up together to
have the same reference potential for the multiplexer/demultiplexer
components. All latch lines and clock lines coming from the eight
gamepad connectors are connected to an 8-bit demultiplexer mod-
ule. The eight data lines are connected to an 8-bit multiplexer
unit. The single demultiplexer and multiplexer output line for latch,
clock, and data is connected to the console gamepad plug. The
arrow heads indicate the input/output behavior for all wires and
buses. A three-wire selection bus is connected in parallel to all
multiplexer/demultiplexer components, making it possible to select
one of the eight gamepads and connect its wires through to the con-
sole. The selection wires are operated by an Arduino. The system
software determines the currently active gamepad and sends the

request over USB to the serial interface of the Arduino where the
firmware is driving the selection bus to enable the chosen gamepad.
The Arduino is also used to operate the LEDs associated with each
gamepad, enabling the light during the time when a player has con-
trol. The multiplexing hardware is completely transparent for the
NES console and gamepads, and does not require any changes to
the original hardware.

Multiplexer/
Demultiplexer

Arduino Tracking
Software

Console
Gamepad
Connector

8 Gamepad
Connectors

CLOCK [1]

LATCH [1]

DATA [1]

CLOCK [8]

LATCH [8]

DATA [8]

USB to Serial

LED
Connector

LED [8]

Figure 8: Simplified scheme of the gamepad multiplexing hard-
ware. Bus width is indicated by numbers in square brackets.

Gamepad Connectors

Console
Gamepad
Connector

Multiplexer/
Demultiplexer

Arduino Connectors

LED
Connectors

Figure 9: Custom-designed multiplexing hardware for eight
NES gamepads.

5. RESULTS
The tracking PC, performing the tracking and producing the out-

put, is a i7 3.2Ghz machine with a Geforce GTX 770 graphics card.
It generates twenty 12 M-pixel frames per second, with approxi-
mately 120 ms latency, most of which originates from the capture
hardware. For the 360 degree projection configuration, the pro-
jection system introduces additional delay, but does not affect the
frame rate. Tracking takes 3 ms to 4 ms on average on thus does
not significantly contribute to the overall latency.

We tested our system on seven classical games, both in the VR
configuration, as shown in Figure 5, and the 360 degree projection
configuration, summarized in Figure 10. Figures 11 and 12 depict
the unfolded output buffer of our tracking process using the direct
method. For context, selected input frames from the console are
shown above the buffer, in their respective positions. The game
world is clearly and continuously captured in the unfolded buffer.

Figure 11 depicts the well known Super Mario Bros. trilogy.
These games include many foreground characters that pass by while

Figure 10: The system as it was deployed during the conference banquet of Eurographics 2015. Different games provide varying
ambiance, and immerse players and spectators in the 8-bit realm.

side-scrolling, and are therefore sometimes visible in the tracked
buffer. Figure 12 depicts the other games that were tested. Excite-
bike is a fast-paced game in which the whole buffer is transversed
very quickly, implying quick camera motion per frame of up to 15
pixels. By contrast, Castlevania is slower in this aspect. Note how
the buffer is overwritten when the scene changes from a forest set-
ting to the castle interior. In Life Force, the input frame includes a
black bar on the right hand side, and therefore the current position
within the buffer is clearly noticeable, as well as a level change.
Probotector is a game in which the map evolves very clearly and
cleanly.

Unfortunately, ground truth data is not available. However, one
can still visually validate the results by comparing a segment of the
output buffer with a single input frame as shown in Figure 11 and
Figure 12. Mismatches produced by foreground elements, drift or
artifacts are directly visible.

6. CONCLUSION
We have presented a hardware and software system to transform

classic side-scrolling games into immersive, multiplayer experi-
ences. By using a real NES console and games, we take advan-
tage of the nostalgic appeal of the 8-bit game era. We tested our
system live at a large event with over four-hundred people and ob-
served strong engagement. Throughout the evening, people con-
tinually played the system, actively cooperating with one another
to advance in the game levels. We observed a new range of social

dynamics, with strangers talking and laughing with one another,
warning each other to be ready when control was passed on to the
next player, and calling other participants to join when a gamepad
was vacant. The 360 degree projection contributed a special am-
biance to the evening, and provided entertainment for those not
playing. At a few instances during the evening, a collective cheer
from the audience erupted when the players beat a difficult level.

Limitations in our system direct us to opportunities for future
research. Games with highly repetitive features can lead to track-
ing failures, as can be seen in the Excitebike result in Figure 12.
Our system does not explicitly distinguish foreground sprites from
background elements, leading to frozen sprite characters in the stitched
textures. Tracking improvements as future work could address
these issues and also offer new ways to enhance the game expe-
rience. Explicitly distinguishing between background and fore-
ground elements would allow us to add additional depth perception
into the VR version of our system so that the background is offset
in space from the foreground.

Latency is a critical issue in any interactive system. Although
our capture and processing algorithms are designed to execute as
fast as possible, some latency is unavoidable. In the VR setting, our
test players did not notice latency that would hinder them from suc-
cessfully playing the game. However, some latency was noticeable
during the Eurographics 2015 event, as the 360 degree projection
system incurred additional latency to our capture and processing.

As our target was 360 degree projection, we focused on side-

scrolling games and developed a tracking algorithm designed for
this use case. Our method does not currently support vertical scrolling
or more complicated camera movement. Future work could con-
sider alternate display geometries beyond circular projection as well
as vertical scrolling. Our VR system provides an ideal tool to test
and debug various setups in preparation for real-world deployment.
Likewise, we demonstrated two control switching methodologies:
temporal switching after a fixed number of seconds or switching
based on the physical position of the game projection. Exploring
other control switching modes is an area of future work.

Perhaps the most interesting opportunity for future work entails
accommodating more advanced game consoles. Although our sys-
tem was designed for the NES console, we are confident it would
work on other classic 2D consoles such as the 16-bit Super Nin-
tendo Entertainment System (SNES) [3]. However, future console
generations focus on 3D graphics and violate the assumptions of
our tracking algorithm. Dynamic scene reconstruction for 3D games
combined with VR could provide a novel, compelling way to expe-
rience such games.

7. ACKNOWLEDGEMENTS
The copyright to all imagery from Super Mario Bros., Super

Mario Bros. 2, Super Mario Bros. 3, and Excitebike lies with Nin-
tendo Co., Ltd. The copyright to all imagery from Castlevania, Life
Force, and Probotector lies with Konami Corporation. We would
like to thank Alessia Marra and Maurizio Nitti for their artistic sup-
port and Jan Wezel for his engineering work.

8. REFERENCES
[1] Arduino Uno Board Overview. Website, February 2014.

http://arduino.cc/en/Main/ArduinoBoardUno.
[2] Blackmagic design intensity shuttle. Website, July 2015.

https://www.blackmagicdesign.com/products/intensity.
[3] Nintendo. Website, July 2015. https://www.nintendo.com.
[4] T. Brox, C. Bregler, and J. Malik. Large displacement optical

flow. In Conference on Computer Vision and Pattern
Recognition, 2009., pages 41–48. IEEE, 2009.

[5] Coolux. Pandoras box server. Website.
http://www.coolux.de/products/pandorasboxserver/.

[6] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.
Surround-screen projection-based virtual reality: the design
and implementation of the CAVE. In Proceedings of the 20th
annual conference on Computer graphics and interactive
techniques, pages 135–142. ACM, 1993.

[7] Y. Furukawa and J. Ponce. Accurate, dense, and robust
multiview stereopsis. Transactions on Pattern Analysis and
Machine Intelligence, 32(8):1362–1376, 2010.

[8] J. E. Gardner. Can the Mario Bros. help? Nintendo games as
an adjunct in psychotherapy with children. Psychotherapy:
Theory, Research, Practice, Training, 28(4):667, 1991.

[9] M. Guzdial and E. Soloway. Teaching the Nintendo
generation to program. Communications of the ACM,
45(4):17–21, 2002.

[10] IMAX Corporation. IMAX: a motion picture film format and
a set of cinema projection standards, 2010.

[11] B. R. Jones, H. Benko, E. Ofek, and A. D. Wilson.
IllumiRoom: peripheral projected illusions for interactive
experiences. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 869–878.
ACM, 2013.

[12] I. Keren. The theory and practice of cameras in
side-scrollers. Website, March 2015.

http://www.gdcvault.com/play/1022243/Scroll-Back-The-
Theory-and.

[13] J. Kopf and D. Lischinski. Depixelizing pixel art. In
Transactions on graphics, volume 30, page 99. ACM, 2011.

[14] F. Kreuzer, J. Kopf, and M. Wimmer. Depixelizing pixel art
in real-time. In Proceedings of the 19th Symposium on
Interactive 3D Graphics and Games, pages 130–130. ACM,
2015.

[15] A. LaMothe. Game programming for the propeller powered
hydra. Parallax, Inc, S.l, 2006.

[16] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense
correspondence across scenes and its applications.
Transactions on Pattern Analysis and Machine Intelligence,
33(5):978–994, 2011.

[17] Micomsoft. DP3913515 XRGB-mini framemeister compact
up scaler unit. Website.
http://www.micomsoft.co.jp/xrgb-mini.htm.

[18] Oculus VR. Oculus Rift development kit 2. Website, 2014.
https://www.oculus.com/dk2/.

[19] J. Suominen. The past as the future? nostalgia and
retrogaming in digital culture. Fibreculture, 11, 2008.

[20] S. Swink. Game Feel: A Game Designer’s Guide to Virtual
Sensation. Morgan Kaufmann Game Design Books. Taylor
& Francis, 2009.

[21] C. T. Tan, A. Johnston, A. Bluff, S. Ferguson, and K. J.
Ballard. Retrogaming as visual feedback for speech therapy.
In SIGGRAPH Asia 2014 Mobile Graphics and Interactive
Applications, page 4. ACM, 2014.

[22] A. Weffers-Albu, S. de Waele, W. Hoogenstraaten, and
C. Kwisthout. Immersive TV viewing with advanced
Ambilight. In International Conference on Consumer
Electronics, pages 753–754. IEEE, 2011.

[23] M. J. P. Wolf, editor. The Video Game Explosion: A History
from PONG to PlayStation and Beyond. Greenwood Press,
2008.

[24] W. Zhang and J. Košecká. Generalized ransac framework for
relaxed correspondence problems. In Third International
Symposium on 3D Data Processing, Visualization, and
Transmission, pages 854–860. IEEE, 2006.

Super Mario Bros.

Super Mario Bros. 2

Super Mario Bros. 3

Figure 11: The unfolded output buffer of our tracking process, for the Super Mario Bros. trilogy. For every game, the first row
depicts selected input frames coming from the console, in their respective positions within the output buffer. The second row depicts
the output tracking buffer. The combination of input frames continuously maps out the game realm in the buffer.

Excitebike

Castlevania

Life Force

Probotector

Figure 12: The unfolded output buffer of our tracking process, for four of the tested games. For each game, the first row depicts
selected input frames coming from the console, in their respective positions within the output buffer. Scene changes overwrite the
current position in the buffer.

